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CLASSIFICATION OF FOEHNS AND THEIR NUMERICAL MODELING

Geladze G.

Abstract. Genesis of Foehns is in detail investigated. They are classified on dryadiabatic,

mostadiabatic and most-dryadiabatic Foehns. A problem about numerical modeling of Foehns

in frame of a flat, two-dimensional mesoscale boundary layer is stated. The problem is at a

stage of numerical realisation. The first encouraging results are received.
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In meteorology there is a well-known term Foehn. It is a wind, as a rule, de-
scending and, often, dry wind bearing heat. He plays an active role in a number
of mesometeorological processes: atmosphere thermohydrodynamics, fog-and cloudfor-
mation, agro-and ecometeorology, hothouse effect, desertification processes; its account
is actual at city, rural, resort and industrial planning; it is possible also to carry out
active influence on it [1-5].

In research of Foehns (forecasting, influence of separate meteoelements, active in-
fluence)their numerical modeling can play an irreplaceable role.

Let’s briefly review the mechanism of Foehn formation. It is known, that at de-
scending dry air heats up according to dryadiabatic gradient γa = 0.01◦C/m. Usually,
it is considered air descending from upland (”shelf”), i.e. from mountain in a valley.

Here is also traditional definition of the Foehn. Let’s consider genesis of the Foehn
formation process more fully: beside of air descending we will take into consideration
the process of initial stage i.e. air ascending and cloud-precipitation formations.

Case 1. We Will imagine a flow of mountain (height H = 1000m) by a dry air.
We will admit, at the foot and before a mountain t1 = 20◦C. Because of dryadiabatic
cooling at top of mountain air will be cooled to tH = 10◦C, and at a foot and behind
mountain air will heat up dryadiabatic again to t2 = 20◦C.

Thus, at a mountain foot (both before and behind it) t1 = t2 = 20◦C. Certainly,
behind mountain we have the Foehn.

But if we consider process only behind a mountain, here air heats up from 10◦C to
20◦C. This traditional kind of the Foehn we named as the dryadiabatic Foehn.

Case 2. At ascending of moist air process goes a little differently: if air reaches
condensation level because of phase transformation of water steam takes place cloud-
formation and allocation of the latent warm of condensation and thereof in parallel to
cooling there is air heating. Therefore adiabatic ascending air is cooled not at 1◦C,
and at 0.6◦C on 100m. In that case we deal mostadiabatic cooling of air (i.e. a mosta-
diabatic gradient γm = 0.006◦C/m). We will underline, that in this case we consider
process without formation of precipitations.

Naturally, behind the mountain air will descend on a mostadiabatic curve: γm =
0.006◦C/m
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That is, if at a foot before the mountain t1 = 20◦C, at top the temperature is
more in comparison with a case 1, i.e. tH = 14◦C, and behind the mountain again
t1 = t2 = 20◦C.

Thus, at mostadiabatic crossing at a foot of mountain temperature identical both
behind and before mountain t1 = t2 = 20◦C, i.e. the same, as at dryadiabatic crossing
only with that difference, that at mountain top at dryadiabatic crossing tH is less, than
at dryadiabatic crossing.

In that way, at mostadiabatic descing of air from upland the thermal heating will
be less, than at dryadiabatic descing. This kind of the Foehn we named as the mosta-
diabatic Foehn.

If we consider air descending from upland then we can distinguish as dry and
mostadiabatic Foehns. We will notice, that neither dry nor mostadiabatic Foehns are
not ”dry” winds, they bear only warmly on the inclined party (behind mountain).
Nevertheless, at a mountain foot (before and behind mountain) the temperature does
not vary: t1 = t2.

Case 3. Let’s consider a more difficult scenario: ascending of most air after achieve-
ment of condensation level is carried out on a mostadiabatic curve (γm = 0.006◦C/m),
therefore the cloud is formed, at mountain top the precipitation drops out, and then
already dehydrated dry air descending occurs, naturally, on a dryadiabatic curve (γa =
0.01◦C/m) because of loss of precipitation.

In this case behind the mountain it had the higher degree of heating, than cooling
at ascending (before mountain). As a result t2 > t1. Here it is valid air heating:
both behind mountain, and at a foot (behind and before of mountain). This kind of
the Foehn we named as most-dryadiabatic, fig. 1 (figure is resulted only for this case
because of the limited volume of the article).

Thus, Foehns can be classified on dryadiabatic (Case 1), mostadiabatic (Case 2)
and most-dryadiabatic (Case 3) kinds.

Let’s notice, that at mountain crossing by air the Foehn is not always formed -
behind mountain there are possible formation of wave movements (in this case there
are wave clouds, ”cloudy streets”...), external convective movements and high velocity
of a running background wind resistances to process of foehnformation; because of high
speeds and turbulence behind mountain vortical movements can be formed, etc.

Foehns are often formed at Suram ridge crossing, in the Alps.
Foehns play special role in formation of a Chile climate: along all this state (≈ 7000

km) are stretched Cordilleras (height ≈ 6000 m). The system of brightly expressed
most-dryadiabatic Foehns are formed at air crossing from the east on the west (at
ridge top precipitation drops out owing to what air ascending on a mostadiabatic
curve descends on a dryadiabatic curve) that promotes desertification even for this
huge oceanside state.

On table 1 (in of most-dryadiabatic case) air temperature at mountain top at its
mostadiabatic ascending, air temperature at a mountain foot at its dryadiabatic descent
and a difference of air temperatures behind and before the mountain are obtained at
different heights of mountains. It is followed from it, that, for example, air is heated
up on 20◦ at crossing by air of 5000 meter ridges. It is throwing huge energy behind a
mountain (actually, the latent warm of condensation). Namely at the expense of it are
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obtained clouds (especially, convective), tropical cyclones, etc., ”the second breath”.
It is possible to consider, that in atmosphere something is concealed under the pretext
of the latent warm of condensation, like a perpetual mobile which should be used.

As to numerical modeling of Foehns we will notice, that in spite of the fact that the
two-dimensional model of a mesometeorological boundary layer of atmosphere (MBLA)
developed by us is flat, it is possible to simulate Foehn-like processes. It is known, that
convections are, basically, of two types: forced and free. In the case of above-stated
Foehns at air crossing over mountain we have a forced convection, i.e. the running
air stream really forces air to flow over mountain. But at free convection in case of
a flat problem we have a similar air ascending and descending, but for other reason,
i.e. because of corresponding stratification of atmosphere. All three aforementioned
kinds of the Foehn are here again possible. We think, that in this case temperature
fields should be more smooth, than in the above-stated Foehns, because ascending and
descending streams are spatially located is closer to each other, than in case of forced
convection (here between ascending and descending airs we have mountain as a thermal
protection).

So, we will consider a two-dimensional (in a plane x − z) problem about MBLA.
The initial equations, boundary and initial conditions have the following form:
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where u,w are horizontal and vertical components of air velocity, p, θ, q are devia-

tions of pressure, temperature and water-vapour mixing ratio from their undisturbed
fields, respectively, v is liquid-water mixing ratio, other designations are given in [6].

The boundary and initial conditions have the form:

at Z = 0 u = 0, w = 0, θ = F (x, t), q = 0, v = 0, c = 0,

where F (x, t) is temperature of MBLA underlying surface:

F (x, t) =

{
0 0 ≤ x ≤ 32km, 48km < x ≤ 80km,
5 sinωt 32km ≤ x ≤ 48km,

at z = Z u = 0, π = 0, ϑ = 0,
∂q
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at x = 0, X
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∂ϑ
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∂x
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∂v

∂x
= 0,
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at t = 0 u = 0, ϑ = 0, q = 0, v = 0.

As the control we result isolines of only vertical velocity of air meteofields (w, ) (fig.
2) (to save place) received on the basis of our model for not abnormal, ordinary pro-
cesses at following parametres: µ = 104m2/sec, ν = 10m2/sec, f = 0.95. (ascending
and descending currents have essential value for Foehns).
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Fig. 1. The most-dryadiabatic Foehn. Fig. 2. Isolines of air vertical velocity w (cm/sec ), (t=9h).

H m γm ascending tH = t1 − γm/H γa descending t2 = tH − γa/H t2 − t1 ◦ C
1000 14 24 4
2000 8 28 8
3000 2 32 12
4000 -4 36 16
5000 -10 40 20

Table 1. Dependence of Foehn elements from height.

For imitation of the most-dryadiabatic Foehn in the moment (t∗), when it is maxi-
mum of liquid-water mixing ratio we programmatically remove cloud water, i.e.

At t = t∗ f = 0,

where f is relative humidity.
The first ranging numerical experiments about imitation of most-adiabatic Foehn

give encouraging results.
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